
Data Transformation Techniques

1. Introduction

2. Transformation Activities

3. Merging Database

4. Reshaping and Pivoting

5. Transformation Techniques

6. Benefits & Challenges
1

1. Introduction

– Process of converting raw data into usable form

– Converts data into a intelligence format

– Convert from one format to another format

Data wrangling:

• The process of gathering, collecting, and transforming

Raw data into another format for better understanding,

decision-making, accessing, and analysis in less time.

• The process of removing errors and combining complex

data sets to make them more accessible and easier to

analyze.

2

2.Transformation Activities
1. Data Deduplication: involves the identification

of duplicates and their removal.

2. Data cleansing: involves extracting words and

deleting out-of-date, inaccurate, and incomplete

information from the source to enhance the

accuracy of the source data.

3. Data validation: is a process of formulating

rules or algorithms that help in validating

different types of data against some known

issues.

4. Format revisioning: involves converting from

one format to another.
3

2.Transformation Activities
5. Data derivation: consists of creating a set of rules

to generate more information from the data source.

6. Data aggregation: involves searching, extracting,

summarizing, and preserving important information

in different types of reporting systems.

7. Data integration: involves converting different data

types and merging them into a common structure

or schema.

8. Data filtering involves identifying information

relevant to any particular user.

9. Data joining: involves establishing a relationship

between two or more tables. 4

3.Merging Database

1. Concatenating along with an axis

2. Using df.merge with an inner join - ∩ of two d.f

3. Using the pd.merge() method with a left join
(uses the key from the lefthand data frame only)

4. Using the pd.merge() method with a right join
(uses the key from the righthand data frame only)

5. Using pd.merge() methods with outer join -∪ of

two d.f

6. Merging on index

5

3.Merging Database

6

Combine data frames in 4 ways

1. If combine Side by side (axis=1) then we can use merge or join

2. If combine Stacking (axis=0) then we can use concat or append

3.Merging Database

7

8

The structure of the dataframes is the same in both cases. In this case, we would need to

concatenate them. We can do that by using the pandas concat() method:
dataframe = pd.concat([dataFrame1, dataFrame2], ignore_index=True)

dataframe

9pd.concat([dataFrame1, dataFrame2],

axis=0)
pd.concat([dataFrame1, dataFrame2],

axis=1)

If we combined the data frames along axis=0, then it combined them

together in the same direction.

If axis = 1, then to combine them side by side.

10

Now, consider another use case where you are teaching two courses: Software Engineering and

Introduction to Machine Learning. You will get two dataframes from each subject: Two for

the Software Engineering course Another two for the Introduction to Machine Learning

course

1. There are some students who are not taking the

software engineering exam.

2. There are some students who are not taking the

machine learning exam.

3. There are students who appeared in both courses.

4. How many students appeared for the exams in total?

5. How many students only appeared for the Software

Engineering course?

6. How many students only appeared for the Machine

Learning course?

Ans:- df.merge (concatenate the individual

dataframes from each of the subjects, and then

use df.merge() methods)

11

12

option 1 : Concatenating along with an axis =1

The StudentID field is

repeated.

13

Option 2: Using df.merge with an inner join

 concatenate by

ignore_index=True and

merge Inner join.

Ans3: we now know there

are 21 students who took

both the courses.

Left join 

you can correctly answer how

many students only appeared

for the Software Engineering

course. The total number

would be 26. Note that these

students did not appear for

the Machine Learning exam

and hence their scores are

marked as NaN.

Right join : to get a list of all

the students who appeared in

the Machine Learning course

Outter join : the total number

of students appearing for at

least one course.

Merging on index
• Sometimes the keys for merging

dataframes are located in the

dataframes index. In such a situation,

we can pass left_index=True or

right_index=True to indicate that the

index should be accepted as the

merge key

• Merging on index is done in the

following steps:

Consider the following two dataframes:

left1 = pd.DataFrame({'key':

['apple','ball','apple', 'apple',

'ball', 'cat'], 'value': range(6)})

right1 = pd.DataFrame({'group_val':

[33.4, 5]}, index=['apple', 'ball']) .

14

15

Inner join

Now, let's consider two different cases.

Firstly, let's try merging using an inner join,

which is the default type of merge. In this

case, the default merge is the intersection

of the keys. Check the following example

code:

df = pd.merge(left1, right1,

left_on='key', right_index=True)

df
The output is the intersection of

the keys from these dataframes.

Since there is no cat key in the

second dataframe, it is not

included in the final table.

Outter join

df = pd.merge(left1, right1,

left_on='key',

right_index=True,how=‘outer’)

df

Note that the last row includes the cat key.

This is because of the outer join.

4.Reshaping and Pivoting

• During EDA, we often need to rearrange

data in a dataframe in some consistent

manner. This can be done with

hierarchical indexing using two actions:

– Stacking: Stack rotates from any particular

column in the data to the rows.

– Unstacking: Unstack rotates from the rows

into the column.

16

4.Reshaping and Pivoting

17

data = np.arange(15).reshape((3,5))

indexers = ['Rainfall', 'Humidity', 'Wind']

dframe1 = pd.DataFrame(data, index=indexers,

columns=['Bergen', 'Oslo', 'Trondheim', 'Stavanger',

'Kristiansand'])

dframe1

5.Transformation Techniques

1. Performing data deduplication

2. Replacing values

3. Handling missing data

1. NaN values in pandas objects

2. Dropping missing values
1. Dropping by rows

2. Dropping by columns

3. Mathematical operations with NaN

4. Filling missing values

5. Backward and Forward filling

6. Interpolating missing values
18

5.Transformation Techniques

4. Renaming axis indexes

5. Discretization and binning

6. Outlier detection and filtering

7. Permutation and random sampling

1. Random sampling without replacement

2. Random sampling with replacement

8. Computing indicators/dummy variables

9. String manipulation
19

1.Performing data deduplication

– If dataframe contains duplicate rows, removing

them.

20

To check duplicates: frame3.duplicated()

drop these duplicates using the drop_duplicates()

2. Replacing values
– it is essential to find and replace some values

inside a dataframe.

21

replaceFrame =

pd.DataFrame({'column 1': [200.,

3000., -786., 3000., 234., 444., -

786., 332., 3332.], 'column 2':

range(9)})

replaceFrame

replaceFrame.replace(to_replace =-

786, value= np.nan)

3. Handling missing data
– 3.1 Whenever there are missing values, a NaN value is used, which indicates Not A

Number.

• It can happen when data is retrieved from an external source and there are some

incomplete values in the dataset.

• It can also happen when we join two different datasets and some values are not matched.

• Missing values due to data collection errors.

• When the shape of data changes, there are new additional rows or columns that are not

determined.

• Reindexing of data can result in incomplete data.

22

dfx.isnull() dfx.notnull()

3. Handling missing data
– Whenever there are missing values, a NaN value is used, which indicates Not A

Number.

• It can happen when data is retrieved from an external source and there are some

incomplete values in the dataset.

• It can also happen when we join two different datasets and some values are not matched.

• Missing values due to data collection errors.

• When the shape of data changes, there are new additional rows or columns that are not

determined.

• Reindexing of data can result in incomplete data.

– dfx.isnull()

– dfx.notnull()

– dfx.isnull().sum()

– dfx.isnull().sum().sum() 15

– dfx.count()

23

3.2 Dropping missing values

– To simply remove them from our dataset.

– dropna() method just returns a copy of the dataframe by dropping

the rows with NaN.

– Dropping by rows------- dfx.dropna(how='all')

– Dropping by columns-------------dfx.dropna(how='all', axis=1)

24

3.3 Mathematical operations with NaN

– To simply remove them from our dataset.
ar1 = np.array([100, 200, np.nan, 300])

ser1 = pd.Series(ar1) ar1.mean(), ser1.mean()

(nan, 200.0)

3.3 Filling missing values

We can use the fillna() method to replace NaN values with any particular values

filledDf = dfx.fillna(0)

filledDf

25

• Backward and Forward filling

– NaN values can be filled based on the last

known values.

• Interpolating missing values

– ser3 = pd.Series([100, np.nan, np.nan,

np.nan, 292]) ser3.interpolate())

– (292-100)/(5-1) = 48

26

6. Benefits of Data Transformation

1. It promotes interoperability between

several applications. The main reason for

creating a similar format and structure in

the dataset is that it becomes compatible

with other systems.

2. Comprehensibility for both humans and

computers is improved when using better-

organized data compared to messier data

(confused data)
27

6. Benefits of Data Transformation

3. It ensures a higher degree of data quality

and protects applications from several

computational challenges such as null

values, unexpected duplicates, and

incorrect indexings, as well as

incompatible structures or formats..

4. It ensures higher performance and

scalability for modern analytical

databases and dataframes..
28

7. Challenges

1. It requires a qualified team of experts and state-of-

the-art infrastructure. The cost of attaining such

experts and infrastructure can increase the cost of

the operation.

2. It requires data cleaning before data transformation

and data migration. This process of cleansing can

be expensively time-consuming.

3. Generally, the activities of data transformations

involve batch processing. This means that

sometimes, we might have to wait for a day before

the next batch of data is ready for cleansing. This

can be very slow.
29

30

31

